A Topological Interaction between Cohesin Rings and a Circular Minichromosome
نویسندگان
چکیده
Sister chromatid cohesion depends on a multiprotein cohesin complex containing two SMC subunits, Smc1 and Smc3, that dimerize to form V-shaped molecules with ABC-like ATPase heads at the tips of their two arms. Cohesin's Smc1 and Smc3 "heads" are connected by an alpha kleisin subunit called Scc1, forming a tripartite ring with a diameter around 40 nm. We show here that some cohesin remains tightly bound to circular minichromosomes after their purification from yeast cells and that cleavage either of cohesin's ring or of the minichromosome's DNA destroys their association. This suggests that the stable association between cohesin and chromatin detected here is topological rather than physical, which is consistent with the notion that DNA is trapped inside cohesin rings.
منابع مشابه
sucrose gradient sedimentation and gel electrophoresis to purify from yeast cohesed sister chromatids of small circular minichromosomes
This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information. To see the final version of this paper please visit the publisher's website. access to the published version may require a subscri...
متن کاملCohesin Interaction with Centromeric Minichromosomes Shows a Multi-Complex Rod-Shaped Structure
Cohesin is the protein complex responsible for maintaining sister chromatid cohesion. Cohesin interacts with centromeres and specific loci along chromosome arms known as Chromosome Attachment Regions (CARs). The cohesin holocomplex contains four subunits. Two of them, Smc1p (Structural maintenance of chromosome 1 protein) and Smc3p, are long coiled-coil proteins, which heterodimerize with each ...
متن کاملBoth Interaction Surfaces within Cohesin's Hinge Domain Are Essential for Its Stable Chromosomal Association
BACKGROUND The cohesin complex that mediates sister chromatid cohesion contains three core subunits: Smc1, Smc3, and Scc1. Heterotypic interactions between Smc1 and Smc3 dimerization domains create stable V-shaped Smc1/Smc3 heterodimers with a hinge at the center and nucleotide-binding domains (NBDs) at the ends of each arm. Interconnection of each NBD through their association with the N- and ...
متن کاملDNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism
Structural maintenance of chromosome (SMC) complexes are proteinaceous rings that embrace DNA to enable vital chromosomal functions. The ring is formed by two SMC subunits, closed at a pair of ATPase heads, whose interaction is reinforced by a kleisin subunit. Using biochemical analysis of fission-yeast cohesin, we find that a similar series of events facilitates both topological entrapment and...
متن کاملCohesin's Concatenation of Sister DNAs Maintains Their Intertwining
The contribution of DNA catenation to sister chromatid cohesion is unclear partly because it has never been observed directly within mitotic chromosomes. Differential sedimentation-velocity and gel electrophoresis reveal that sisters of 26 kb circular minichromosomes are held together by catenation as well as by cohesin. The finding that chemical crosslinking of cohesin's three subunit interfac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 122 شماره
صفحات -
تاریخ انتشار 2005